Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results
نویسندگان
چکیده
The new generation of weather observatory satellites, namely Global Precipitation Measurement (GPM) constellation satellites, is the lead observatory of the 10 highly advanced earth orbiting weather research satellites. Indeed, GPM is the first satellite that has been designed to measure light rain and snowfall, in addition to heavy tropical rainfall. This work compares the final run of the Integrated Multi-satellitE Retrievals for GPM (IMERG) product, the post real time of TRMM and Multi-satellite Precipitation Analysis (TMPA-3B42) and the Era-Interim product from the European Centre for Medium Range Weather Forecasts (ECMWF) against the Iran Meteorological Organization (IMO) daily precipitation measured by the synoptic rain-gauges over four regions with different topography and climate conditions in Iran. Assessment is implemented for a one-year period from March 2014 to February 2015. Overall, in daily scale the results reveal that all three products lead to underestimation but IMERG performs better than other products and underestimates precipitation slightly in all four regions. Based on monthly and seasonal scale, in Guilan all products, in Bushehr and Kermanshah ERA-Interim and in Tehran IMERG and ERA-Interim tend to underestimate. The correlation coefficient between IMERG and the rain-gauge data in daily scale is far superior to that of Era-Interim and TMPA-3B42. On the basis of daily timescale of bias in comparison with the ground data, the IMERG product far outperforms ERA-Interim and 3B42 products. According to the categorical verification technique in this study, IMERG yields better results for detection of precipitation events on the basis of Probability of Detection (POD), Critical Success Index (CSI) and False Alarm Ratio (FAR) in those areas with stratiform and orographic precipitation, such as Tehran and Kermanshah, compared with other satellite/model data sets. In particular, for heavy precipitation (>15 mm/day), IMERG is superior to the other products in all study areas and could be used in future for meteorological and hydrological models, etc.
منابع مشابه
Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland
The Global Precipitation Mission (GPM) Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era s...
متن کاملEvaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China
As the successor of the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission significantly improves the spatial resolution of precipitation estimates from 0.25 ̋ to 0.1 ̋. The present study analyzed the error structures of Integrated Multisatellite Retrievals for GPM (IMERG) monthly precipitation products over Mainland China from March 2014 to February 20...
متن کاملAssessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar
Satellite precipitation products from the Global Precipitation Measurement (GPM) mission and its predecessor the Tropical Rainfall Measuring Mission (TRMM) are a critical data source for hydrological applications in ungauged basins. This study conducted an initial and early evaluation of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG) final run and the TRMM Multi-sa...
متن کاملAssessment of GPM and TRMM Precipitation Products over Singapore
The evaluation of satellite precipitation products (SPPs) at regional and local scales is essential in improving satellite-based algorithms and sensors, as well as in providing valuable guidance when choosing alternative precipitation data for the local community. The Tropical Rainfall Measuring Mission (TRMM) has made significant contributions to the development of various SPPs since its launc...
متن کاملSimilarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau
The performance of Day-1 Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 Version 7 (3B42V7), was cross-evaluated using data from the best-available hourly gauge network over the Tibetan Plateau (TP). Analyses of three-hourly rainfall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016